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Abstract

The development of genome-editing technologies, mainly clustered regularly inter-
spaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), has
transformed modern biotechnology, enabling the precise modification of genetic
material across diverse organisms. In the agri-food sector, CRISPR/Cas9 provides
an accurate tool for genome editing in crop plants to enhance their yield, stress tol-
erance, disease resistance, and nutritional content. Unlike the genetic engineering
techniques used in genetically modified organisms (GMOs), CRISPR/Cas9 enables
precise gene editing without introducing foreign DNA, sparking debates over its
classification and regulation within the current GMO framework. While CRISPR/
Cas9 technology holds significant promise, its application in the agri-food sector
raises ethical, ecological, and socio-economic concerns that necessitate thorough
evaluation and transparent governance. Recent European Union (EU) legislative
measures seek to establish regulatory pathways that balance innovation with bio-
safety and public confidence. This brief report examines the benefits, challenges,
and public concerns associated with the use of CRISPR/Cas9 technology in the agri-
food industry, highlighting its role in advancing a sustainable and responsible food
system.
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The 21st century presents many new challenges for society, that
are threatening our planet. These include the expanding global
population and rising food demand, the decline in biological di-
versity, and the advancing impacts of climate change. By 2050,
the human population is projected to reach approximately 9 bil-
lion, representing an increase of nearly 2 billion people within a
relatively short period of time [Gu et al. 2021]. The growing global
population and the expanding food deficit in poor countries pose
a significant challenge to the worldwide agri-food sector. This can
be addressed by improving crop efficiency and using areas previ-
ously deemed unsuitable for cultivation (e.g., soils with high salin-
ity) [Gajardo et al. 2023]. The sustainable use of agricultural land
is now more critical than ever, alongside the maintenance of con-

sistent, reliable yields. Achieving this goal requires ongoing ad-
vances in the development of cultivated plant varieties to support
sustainable food production. The increasing problems caused by
plant pests, droughts linked to global warming, and soil degrada-
tion are currently serious challenges for the agri-food industry
[Massel et al. 2021]. Rapid progress in crop breeding and food
production, therefore, requires alternative solutions that utilize
the latest advances in genome editing [Singh et al. 2022]. New
genomic techniques (NGT) are promising tools for transforming
modern biotechnology, enabling precise, efficient, and sustain-
able improvements in plant and animal breeding [Villiger et al.
2024]. These techniques include cisgenesis (CRISPR/Cas9), tar-
geting mutagenesis with site-specific nucleases (TALEN, ZNF),
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Figure 1. Schematic representation of CRISPR/Cas9 application in the agri-food sector. Figure created with BioRender.com

(https://BioRender.com).

oligonucleotide-directed mutagenesis (ODM), RNA-dependent
DNA methylation (RADM), and grafting onto genetically modified
(GM) rootstocks [Ordonio et al. 2023]. The agri-food sector antici-
pates these methods because the genome editing of plants offers
promising alternatives to genetically modified organisms (GMOs)
[Podevin et al. 2012].

Since the discovery of the CRISPR/Cas9 mechanism in 2012, re-
markable advances have been achieved in medicine, biotechnol-
ogy, agriculture, and animal sciences [Jinek et al. 2012]. To date,
thousands of genome-editing experiments have been conducted
worldwide in both prokaryotic and eukaryotic systems, demon-
strating the broad applicability and efficiency of this technology
[Lietal.2023]. Currently, research institutions and biotechnology
laboratories worldwide are actively using genome-editing tech-
nologies to improve a wide range of crop species [Zaman et al.
2021]. The use of these tools offers enormous potential to devel-
op improved plant varieties with higher yields and better-qual-
ity traits in a relatively short 2-3 years, compared to traditional
breeding methods [Long et al. 2018]. Because CRISPR/Cas9 tech-
nology has already been extensively reviewed in the scientific lit-
erature [Gao et al. 2021], this report provides a concise overview
of genome-editing applications, particularly CRISPR/Cas9, in the
agri-food sector. Specifically, the benefits, potential challenges,
legislative restrictions, and social issues associated with imple-
menting CRISPR/Cas9 technology in the food supply chain are
summarized.

CRISPR Technology - potential application in the
agri-food sector

Unlike traditional genetically modified organisms (GMOs), which
usually depend on inserting foreign DNA, CRISPR/Cas9 makes
highly precise modifications within the plant’s own genome [Lan-
igan et al. 2020; Villiger et al. 2024; Gilbertson et al. 2025]. These
edits often resemble naturally occurring genetic variations that
promote biodiversity and adaptation to environmental challeng-
es [Gilbertson et al. 2025]. As a result, CRISPR-based genome ed-
iting is increasingly being seen as a safe, targeted, and versatile

alternative to both conventional breeding and transgenic modifi-
cations, offering a tool for quickly developing improved cultivars
[Asmamaw, Zawdie 2021; Acevedo-Garcia et al. 2017]. CRISPR/
Cas9 has been used across major crop species, including rice,
wheat, maize, and barley, to improve key agronomic traits such
as yield, quality, stress resilience, disease resistance, herbicide
tolerance, and nutritional value [Lanigan et al. 2020; Villiger et al.
2024] [Fig.1].

For example, Miao et al. [2018] used the CRISPR/Cas9 system to
create a rice line in which the Pyl1, Pyl4, and Pyl6 genes were si-
multaneously knocked out. The resulting triple mutant showed
improved agronomic performance, including increased grain
yield, longer panicles, more primary and secondary branches,
and fewer tillers compared to wild-type plants. In another study,
coordinated CRISPR/Cas9-mediated disruption of three grain-
weight-related genes, Gw2, Gw5, and Tgwé, led to a significant
increase in grain size and overall grain mass [Xu et al. 2016]. Ad-
ditionally, knocking out OsAAP3, which encodes an amino acid
transporter involved in regulating nutrient distribution within the
plant, was found to enhance tiller number and grain yield without
impairing grain quality [Lu et al. 2018].

CRISPR/Cas9 has been used to modify plant genes conferring re-
sistance to biotic stresses, including bacterial, fungal, and viral
infections [Ma et al. 2019; Jung et al. 2018; Mishra et al. 2021; Shou
2021]. For example, researchers developed a powdery mildew-
resistant wheat line by using CRISPR/Cas9 to introduce a targeted
modification in the mlo1 gene, which plays a key role in mediating
susceptibility to this fungal disease [Wang et al. 2014]. The CRIS-
PR/Cas9 genome-editing system has been used to simultaneous-
ly edit the promoter regions of Sweet11, Sweet13, and Sweet14
to produce rice lines exhibiting broad-spectrum resistance to
Xanthomonas oryzae pv. Oryzae (Xoo0) [Oliva et al. 2019]. In turn,
Malnoy et al. [2016] used CRISPR/Cas9 to edit Dipm-1, Dipm-2,
and Dipm-4 in apple protoplasts, resulting in increased fire blight
resistance. Conversely, CRISPR/Cas9 has been used to extend the
shelf life of tomatoes by disrupting the RIN (Ripening Inhibitor)
gene, which encodes a MADS-box transcription factor crucial for
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fruit ripening regulation [Jung et al. 2018]. This genome-editing
strategy has been successfully applied across several tomato cul-
tivars, including Ailsa Craig, Mamirio, and Golden Bell [Ito et al.
2015; Jung et al. 2018]. In the United States, DuPont Pioneer ap-
plied CRISPR/Cas9 genome editing to maize to modify its starch
composition. This approach produced a maize line that synthesiz-
es starch almost entirely as amylopectin. The targeted locus was
the Waxy (Wx1) gene, which encodes a granule-bound starch syn-
thase responsible for amylose biosynthesis [Wu et al. 2020]. The
disruption of wx1 reduces amylose production, shifting starch
composition towards nearly 100% amylopectin and resulting
in the characteristic “waxy maize” phenotype [Globus, Qimron
2018]. CRISPR/Cas9 has also been employed to knock out the Or-
ange (Or) gene to enhance carotenoid accumulation, particularly
B-carotene in rice [Zhu et al. 2019]. The technology has further
been used to disrupt the Gw2 gene, producing mutant lines with
increased protein content and higher levels of essential dietary
elements, including Fe, Zn, K, P, and Ca, in the rice endosperm
[Achary, Reddy 2021].

Conversely, CRISPR/Cas9 techniques can also be used to enhance
the nutritional and health-related traits of crop plants [Jouanin et
al.2020; Mackon etal.2023]. Sanchez-Le6n et al.[2018] developed
a low-gluten wheat line with approximately an 85% reduction in
immunoreactivity by targeting conserved regions of the a-gliadin
gene family. More recently, Liu et al. [2023] demonstrated that
the precise editing of two y-gliadin genes, Gli-y1-1D and Gli-y2-
1B, improved wheat end-product quality and decreased the pres-
ence of gluten epitopes linked to celiac disease. Another example
includes a GABA-enhanced tomato produced through multiplex
CRISPR/Cas9 editing, which targeted five genes involved in GABA
metabolism: three pyruvate-dependent GABA transaminases
(GABA-TP 1, GABA-TP 2, and GABA-TP 3), the cationic amino acid
transporter CAT9, and SSADH (succinate semialdehyde dehydro-
genase) [Li et al. 2018]. As a result, GABA-enriched tomato has
been commercially available in Japan since 2021 [Ahmad 2022].
In another study, Jing et al. [2021] employed the CRISPR/Cas9
system to knock out Gmfatb1, a gene encoding a fatty acyl carri-
er protein thioesterase, which significantly reduced the levels of
two saturated fatty acids in soybean mutants. Another instance
involves the CRISPR/Cas9-edited non-browning mushroom,
in which the Ppo1 gene was knocked out to prevent enzymatic
browning [Waltz 2016]. Similarly, Maioli et al. [2020] used CRISPR/
Cas9 to knock out three Ppo genes (Smelppo 4, Smelppo 5, and
Smelppo 6) in potato, resulting in a non-browning phenotype.
Furthermore, CRISPR/Cas9 has been used to modify a variety of
genes associated with key agronomic and quality traits in rice.
For example, editing Fad2-1/Fad2 increased oleic and linoleic acid
content [Bahariah et al. 2021], while the modification of Gs9 im-
proved grain shape [Zhao et al. 2018]. Additionally, CRISPR/Cas
9 has been used to enhance rice eating and cooking quality by
introducing aroma-related traits into non-aromatic cultivars. For
instance, the non-aromatic rice variety ASD16 was converted into
an aromatic type by generating novel Osbadh?2 alleles using CRIS-
PR/Cas9 [Ashokkumar et al. 2020]. The Osbadh 2 gene is a criti-
cal factor in rice fragrance, and its targeted modification allows
breeders to develop new aromatic lines without affecting other
desirable agronomic qualities.

Research on plant genome editing is also progressing in Poland.
Several research groups are actively involved in this field, sup-

ported by both national and international collaborations. Key in-
stitutions include the Institute of Biochemistry and Biophysics of
the Polish Academy of Sciences (PAN) in Warsaw and the Institute
of Bioorganic Chemistry in Poznan. A notable earlier achievement
by Polish researchers was the development of a method to engi-
neer lettuce cells to produce a hepatitis B vaccine through trans-
formation with Agrobacterium tumefaciens LBA4404 [Kapusta
et al. 1999]. Researchers at the University of Wroctaw improved
flax traits through non-GMO, epigenetically based methods.
Specifically, they used RNA-dependent DNA methylation (RADM)
to regulate the levels of key metabolites, including isoprenoids,
phenylpropanoids, and glutathione [Szopa, Kulma 2022]. These
epigenetic changes aim to boost pathogen resistance, increase
seed and fiber yields, and enhance the quality of flax oil and fi-
ber. The research has advanced to the stage where seeds have
been produced from the first fungus-resistant flax lines, with
plant material cultivated on a one-ton scale [Szopa, Kulma 2022].
More recently, CRISPR/Cas9 genome editing was employed by
researchers from the Institute of Plant Genetics, PAS, to disrupt
three candidate resistance genes identified by genome-wide
association mapping in the clubroot-resistant Arabidopsis ac-
cessions Est-1 and Uod-1. CRISPR/Cas9-mediated knockout of
Rpb1 abolished resistance to Plasmodiophora brassicae, showing
that Rpb1 is required to activate downstream defense pathways
[Ochoa et al. 2023]. CRISPR/Cas9 technologies have also been
used to manipulate crop genomes by scientists at the Institute
of Plant Breeding and Acclimatization - State Research Institute
(IHAR-PIB) in Radzikéw [Gasparis et al. 2019]. Researchers used
the CRISPR-Cas9 gene-editing system to inactivate two specif-
ic genes, HVCKX1 and HvCKX3, in barley, which are involved in
cytokinin metabolism, a group of plant hormones that regulate
cell growth and division. The results showed that knocking out
HvCKX1 and HvCKX3 affected cytokinin metabolism and signifi-
cantly altered root development, particularly in HvCKX1 mutants.
In summary, the work carried out by the Department of Genetic
Engineering with the Department of Functional Genomics has re-
sulted in two patents (https://ihar.edu.pl).

Genome editing tools are also increasingly used in modern live-
stock breeding, driven by the need to breed animals with precise-
ly defined, desirable traits. Sequencing livestock genomes has en-
abled researchers to identify thousands of metabolic pathways
and genes responsible for specific production traits [Liu et al.
2024]. The most desirable traits in animals include rapid growth,
significant muscle gain, high milk yield, and the presence of bio-
active components in meat. Current research provides genome
editing to produce milk with properties similar to human milk,
thereby eliminating food allergies [Popova et al. 2023; Hadri et al.
2025]. Ni et al. [2014] successfully edited the B-lactoglobulin (Blg)
gene using the CRISPR/Cas9 system in goats. Similarly, Knockout
of the a-lactalbumin (Lalba) and (-lactoglobulin (Blg) genes in
goats resulted in milk with reduced immunogenic protein con-
tent, rendering it suitable for individuals with allergies [Zhou et
al. 2017].

Examples of CRISPR/Cas9-mediated genome modifications in
crops used within the agri-food sector are shown in Table 1.
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Crop name Gene Gene function Editing Trait improvement References
symbol methods
rice Pyl1, Pyl4, regulate plant growth knockout  Promote rice growth and productivity Miao et al. [2018]
Pyl6
rice OsSNB regulate flower organ development and grain ~ knockout Increase the grain length, grain width and 1000- Maetal. [2019]
shape grain weight
rice HvCKX1 catalyze the irreversible degradation of knockout  Increase in grain yield and root biomass Gasparis et al.
active cytokinins [2019]
Wheat TaGASR7 grain length and weight knockout ~ 1000-grain weight Zhang et al. [2016]
Wheat TaGW2 encoding RING E3 ligase knockout  Increase the length and width of grains Zhang et al. [2018]
Rice OsBADH2 encoding betaine aldehyde dehydrogenase knockout  Increase the flavour Shan etal. [2015]
rice Rc production of red pigment knockout  Increase in the production of proanthocyanidins ~ Zhu et al [2019]
and anthocyanidins
Spring Waxy catalyse the synthesis of amylose knockout  Reduce amylose content Fan [2021]
barley
maize Wx1 encoding starch synthase knockout  Increase maize amylopectin content Zhu et al. [2020]
tomato Ant1 regulate plant growth In-situ- Increase anthocyanin content Ito etal. [2015]
specific
activation
rice OsALS OsU3  encoding the acetolactate synthase 1 knockout  Herbicides resistance Sun etal. [2016]
soybean GmFATB1 encoding the FATB protein knockout  Reduce the contents of two saturated fatty acids ~ Shou [2021]
rice OsSEC3A interacted with rice SNAP25-type SNARE knockout  enhanced resistance to the fungal pathogen Maetal. [2018]
protein OsSNAP32 and phosphatidylinositol- Magnaporthe oryzae
3-phosphate
potatoes StDND1, disease susceptibility genes knockout  increase resistance against late blight Kieu et al. [2021]
StCHL1,
StDMR6-1
chili pepper  CaERF28 disease susceptibility gene knockout  increased anthracnose fungus (C. truncatum) Mishra et al. [2021]
resistance
rice Cry2AX1 synthetic gene knockout  resistance to leaf folders (C. medinalis) and rice Rajadurai et al.
yellow and stem borer (S. incerulas) [2018]
wheat Pdil5-1, encoding protein disulfide isomerase (PDI),  knockout  resistance against the yellow mosaic virus Kan et al. [2023]
elF4E a type of endoplasmic reticulum (ER)-

resident chaperone protein.

Table 1. Examples of genes from various crops that have been modified by the CRISPR/Cas9 system.

CRISPR Technology - concerns and challenges for
the agri-food sector

The agri-food sector faces many challenges [Devaux et al. 2021].
There is a strong demand for crops developed with modern
technologies that avoid controversy or social issues. Developing
innovative genome editing tools based on cisgenesis meets these
needs [Shew et al. 2018]. The simplicity and stability of these
methods offer excellent opportunities for the agricultural and
food industries. They enable faster, more efficient development
of new, high-yielding varieties that are resistant to diseases and
environmental stresses, producing highly nutritious food. This
will help address issues related to sustainable development and
the future of agriculture.

Asignificant challenge for the agri-food sector will be maintaining
high safety standards for genome-edited food and agricultural
environments [Domingo 2025]. Food placed on the consumer
market must be safe, and genetically modified crops released
into the environment should not harm biodiversity or protected
areas [Tsatsakis et al. 2017]. The rapid development of innovative
genome-editing technologies has raised many questions about
ethics, biosafety, agriculture, and intellectual property rights
[Davison, Ammann 2017]. As with previous debates on genetic
engineering tools, concerns have emerged about the potential
misuse of applied technologies. Given the development of new
genomic engineering techniques, one of the main challenges for
the agri-food market is to actively engage in establishing clear
approval procedures for genome-edited agricultural products
and food within the EU [Davison, Ammann 2017; Brookes, Smyth
2024]. It is essential to differentiate among various genome-ed-

iting applications for regulatory assessment within existing legal
frameworks. Some applications may lead to genetically modified
plants, whereas others may produce plants similar to those made
through traditional breeding methods. The latter do not cross
species barriers, resulting in plants that could occur naturally
or through conventional breeding. The key factor for regulatory
classification should be the nature of the trait or modification in
the new crop variety, not the technology used [Brookes, Smyth
2024]. Of course, the path to commercializing research findings
and integrating genome-edited products into the agri-food sec-
tor remains lengthy. Nonetheless, research results have already
sparked interest from the private sector. Biotechnology compa-
nies that commercialize CRISPR/Cas9 technology expect the agri-
food sector to become one of the most lucrative areas to pro-
duce genome-edited food [Kalaitzandonakes et al. 2023]. Itis also
important to remember that developing modern strategies for
producing genome-edited products will require increased finan-
cial investment in innovative research and commercialization,
from both private and public sectors. This is vital to ensure that
precise, genome-based breeding techniques do not become the
exclusive domain of a few large international corporations, which
use them only in major crop species that guarantee quick returns
and high profits [Bohle et al. 2024]. One potential solution is to
enhance public funding for agricultural research.

Regulatory Framework for CRISPR Technology in
the Agri-Food Sector

Although new genomic techniques are promising, they still en-
counter legal hurdles within the EU. The main regulatory ques-
tion is whether CRISPR-edited organisms should be treated like
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genetically modified organisms (GMOs) or like conventionally
bred plants, especially when no foreign DNA is added. Current-
ly, regulations only cover genetically modified organisms (GMOs)
(Directive 2001/18/EC and Regulation (EC) No. 1829/2003) [Bohle
et al. 2024]. These do not apply to NGTs. In July 2018, the Grand
Chamber of the European Court of Justice (EC)) determined that
the environmental and health risks associated with plants created
by NGTs are comparable to those posed by producing and distrib-
uting GMOs through transgenesis. As a result, the ECJ concluded
that Directive 2001/18/EC fully applies to NGTs [European Court
of Justice, Confédération Paysanne 2018]. In 2023, the European
Commission proposed a draft regulation to support the market
entry of new genomic techniques (NGTSs). Plants were categorized
into two groups: those with a single genomic modification (NGT1)
and those with multiple modifications (NGT2) [EFSA 2025]. How-
ever, Poland did not endorse the proposal and stated thatitwould
continue to develop its own regulations to address NGTs' specific
features. Nonetheless, several initiatives have been established
within the EU to help overcome these regulatory challenges.
Among them are the COST Action PlantEd (2019-2023) [https://
plantgenomeediting.eu/] and the EU-SAGE network (Sustainable
Agriculture through Genome Editing) [https://www.eu-sage.eu/],
both of which aim to promote informed discussion and dissem-
inate science-based knowledge on new breeding technologies.

In the US, the agencies responsible for GMO regulation are the
US Food and Drug Administration (FDA), U.S. Environmental Pro-
tection Agency (EPA), and US Department of Agriculture (USDA),
which ensure GMO safety for human consumption, animal feed,
the environment, and industry. The coordination of these agen-
cies to regulate and monitor GMOs is managed by the Coordi-
nated Framework for Regulation of Biotechnology, implemented
in 1986 [Coordinated Framework 2025]. According to this frame-
work, new whole foods do not need to be proven safe before be-
ing released onto the market, resulting in a wide variety of GMO
crops being cultivated in the US.

Canada developed a system that places a greater emphasis on
risk assessment, approving plants with novel traits for human
consumption on a case-by-case basis [Smyth 2014]. It is worth
noting that Canadian law does not differentiate between novel
traits obtained through genome engineering and those devel-
oped via traditional breeding. The legislation introduced in 1994
has led to the widespread adoption of genetically modified (GM)
canola, corn, and soybeans [Smyth 2014]. Interestingly, unlike in
the United States, Canadian law does not permit patenting multi-
cellular organisms [Maher 1997].

The United Kingdom recently updated its legislation through
two key acts [Freeland et al. 2024]. In 2022, the Environmental
Protection Act was enacted, allowing scientists to carry out GMO
field trials more easily. In 2023, the Genetic Technology (Precision
Breeding) Act was passed, introducing the term “precision-bred
organisms” for organisms created with NGTs and exempting
them from the regulatory requirements of GMOs, moving away
from previous EU-style regulations [Watson and Hayta, 2024].
The new regulation will enable the broader use of organisms de-
veloped with NGTs [Tachikawa, Matsuo 2024]. Additionally, China
has a comprehensive regulatory framework for approving GMO
crops, comprising four documents: “Administrative Measures on
the Safety Assessment of Agricultural GMOs,” “Measures for the

Examination and Approval of Main Crop Varieties,” “Measures
for the Administration of Production and Operation Licensing of
Crop Seeds,” and “Nomenclature of Agricultural Plant Varieties”
[Liang et al. 2022]. Under these regulations, GM cotton and pa-
paya are widely cultivated in China, with several varieties of corn,
soybean, and rice already approved for cultivation but not yet for
commercial production [Sun et al. 2024].

Japan’s legislative system introduced site-directed nuclease
(SDN) technologies, categorizing genome-editing technologies
into SDN-1, -2, and -3. SDN-1 involves genome modifications that
result in indels and deletions, and organisms produced through
this method are regulated similarly to non-GMO organisms. SDN-
2 refers to organisms with base substitutions, while SDN-3 in-
volves organisms with foreign genes introduced. Both SDN-2 and
SDN-3 require a template and are regulated as GMO organisms,
requiring safety assessments and mandatory labelling [Kondo,
Taguchi 2022]. Currently, several genetically modified products
are available on the market, including GABA-enriched tomatoes,
sea bream, high-growth tiger puffer fish, waxy maize, and olive
flounder. All except for waxy maize were developed by start-ups
in Japan [Tachikawa, Matsuo 2024]. Like Japan, Australia also de-
veloped a similar legislative system, under which organisms cre-
ated with SDN-1 are not regulated as GMOs [Thygesen 2024].

In Latin America, GMO regulations vary between different coun-
tries. Argentina is recognized as a leader in GMO production, with
48 approved varieties for commercial cultivation and being one
of the largest producers of GM crops [Dederer, Hamburger 2019].
The organization responsible for GMO regulation in Argentina
is CONABIA (Comisiéon Nacional Asesora de Biotecnologia Ag-
ropecuaria). Brazil is another major producer of GM crops, with
more than 100 modified varieties approved for cultivation [Ge-
nome Editing in Latin America 2025]. Brazil has specific regula-
tions regarding GMOs and has ratified the Cartagena Protocol on
Biosafety (CPB), which oversees the transfer of GMO organisms
between countries. Peru and Bolivia have adopted stricter reg-
ulations. Bolivia had a moratorium on all GMOs until 2005 and
has struggled to establish a clear framework for the cultivation,
importation, and development of genetically engineered organ-
isms. Peru is also slow to update its laws regarding GMOs, as it
implemented the moratorium on GMO organisms in 2011 [Zarate
et al. 2023]. Mexico, which previously permitted the cultivation
and human consumption of GMOs, issued a presidential decree
in 2023 that replaced the 2020 regulatory framework and banned
the cultivation and import of GM corn [Roca et al. 2023].

Ethical and social perspectives on CRISPR
technology in the agri-food sector

New genomic techniques offer high control and accuracy in gene
editing, with significant implications for agriculture and food se-
curity [Watson, Hayta 2024]. However, organisms and products
produced using these methods often face the same scrutiny as
traditional GMOs, and public awareness of genetic engineering
techniques remains limited. The main challenge for the agri-food
sector remains public acceptance, which remains unresolved
[Rzymski, Krélczyk 2016]. Primarily, active debate and education
are needed to persuade society that breeding progress enabled
by innovative genomic methods can meet the growing demand
for food. Unfortunately, innovations in food production enabled
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by genomic technologies currently spark controversy, misconcep-
tions, and unfounded fears. The average citizen has little knowl-
edge of biotechnology, genetic engineering, or the potential of
genome editing in crop breeding and production. This knowledge
is often fragmented and taken out of context. It usually consists
of biased opinions rather than accurate, thought-provoking in-
formation that encourages independent reasoning. This lack of
knowledge and reliable information likely fuels many disputes
regarding these innovative technologies. Regardless of scientists’
opinions, government policies, or environmental protests, the ul-
timate decision to accept or reject products developed through
genome editing rests with consumers [Bohle et al. 2024]. In the
USA, Canada, Belgium, France, and Australia, 56%, 47%, 46%,
30%, and 51% of respondents, respectively, reported they would
consume both GM and CRISPR-modified food [Shew et al. 2018].
The same study found that respondents were more inclined to
eat CRISPR-modified food than GMO food, suggesting an oppor-
tunity to reduce skepticism towards NGT-modified organisms. In
Europe, consumer awareness of NTG use in the agri-food sector
remains limited. According to a 2019 Eurobarometer survey, only
21% of Europeans had heard of genome editing [EFSA 2019]. In Po-
land, the figure was 16%, compared to 62% in Finland, the best-in-
formed country [EFSA 2019]. The promising development of the
CRISPR/Cas9 tool poses specific societal challenges and raises
concerns about potential misuse, which could have disastrous
consequences. However, one certainty is that nature will never
cease to inspire us with its biological toolkit. As scientists, we are
motivated to explore the limits of the natural world and uncov-
er its fundamental mechanisms, some of which, such as CRISPR/
Cas9, could serve as tools for future discoveries. The tools them-
selves do not pose a threat, and it is hoped that CRISPR/Cas9
technology will fulfil its promises, provided it is used responsibly
and carefully. Many companies also utilize this technology to pro-
duce high-quality food and feed crops. Products made with CRIS-
PR/Cas9 editing contain no foreign DNA, and the process can be
carried outin compliance with all legal standards and regulations
set by agencies that often oppose genetic modification.

Conclusions

CRISPR/Cas9 has become one of the most transformative tools
in modern molecular biology, offering a precise, efficient, and
adaptable platform for targeted genome editing. In the agri-food
industry, its application has already shown significant potential
to introduce beneficial traits, such as improved nutritional pro-
files, greater resilience to biotic and abiotic stresses, and longer
post-harvest shelf life. Unlike traditional genetic modification,
CRISPR-based editing can produce changes that closely resem-
ble naturally occurring mutations, removing the need for foreign
DNA. This difference not only boosts the likelihood of public ac-
ceptance but also simplifies regulatory assessment in jurisdic-
tions with science-based frameworks. Furthermore, CRISPR/Cas9
has become essential in functional genomics, helping to uncover
gene-trait relationships and facilitating the swift development
of next-generation crop varieties. Its uses also extend beyond
plants to microorganisms employed in fermentation, probiotic
formulations, and nutritional enhancement, thereby opening up
new avenues to improve food quality and safety.

Despite these advances, the EU regulatory environment presents
a significant obstacle to the adoption of genome-edited crops.

Although many technical challenges of the CRISPR/Cas systems
have already been addressed or are likely to be overcome through
ongoing research, the EU currently regulates genome-edited
plants under the same legal framework as GMOs, regardless of
the type or degree of genetic modification. This regulatory ap-
proach greatly limits the cultivation and commercialization of ge-
nome-edited varieties, making the commercial viability of such
crops largely feasible for major commodity species such as maize
and soybean, where the high costs of regulatory compliance can
be absorbed, typically by large multinational firms. Consequent-
ly, the broader application of precise genome-editing technolo-
gies in European plant breeding remains limited, despite their
scientific potential and potential contributions to sustainable
agri-food development.
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